[image: Book Cover]
Imprint
Published 2020 by Smashing Media AG, Freiburg, Germany.
All rights reserved.
ISBN (Kindle): 978-3-945749-92-0
Cover design and interior illustrations: Rob Draper
Copyediting: Owen Gregory
eBook production: Cosima Mielke
TypeScript in 50 Lessons was written by Stefan Baumgartner and reviewed by Shawn Wang.
Please send errors to errata@smashingmagazine.com.

Table of Contents
Imprint
Acknowledgements
Foreword
Introduction
1. TypeScript for Smashing People
2. Working with Types
3. Functions
4. Union and Intersection Types
5. Generics
6. Conditional Types
7. Thinking in Types
About the Author

To Doris, Clemens, and Aaron

Acknowledgements
This book would not exist if it wasn’t for Markus Seyfferth. Not only did he encourage me to pursue my book idea, but our regular meetings helped tremendously to shape the outline and contents of the final piece.
My ScriptConf buddies Sebastian Gierlinger and Dominik Angerer are partners in crime, always open to validate ideas, and invaluable friends. Their feedback and motivation helped a great deal to finalize this book.
I want to thank Rob Draper1, who not only created the marvellous artwork you see in this book, but also helped a lot to find a theme and put a very technical topic in a very human perspective.
The wonderful crew at Smashing. It has been such a joy to work with you on this piece. Rachel Andrew is the best editor one can wish for. Owen Gregory makes me sound wonderfully English. Ari Stiles with her captivating enthusiasm creates art out of words. Cosima Mielke, who applied every ebook trick available to make the final result extraordinary. And Vitaly Friedman is constantly helping me to make my ideas a reality.
To say Shawn Wang did the technical review would not do his influence justice. He put a lot of TypeScript culture into the book that made it complete.
My colleagues at Dynatrace, especially Fabian Friedl, Thomas Heller and Ernst Ambichl. Working with them had direct influence on every page written.
The TypeScript and TSConf:EU community. Daniel Rosenwasser, Anders Hejlsberg, Marius Schulz, Natalie Marleny, Bert Belder, Fred Schott, Lili Kastilio, Nathalia Rus, Vanessa Böhner, Marvin Hagemeister, Gary Bernhardt, Mirjam Bäuerlein, Georg Kothmeier, Alex Rosemann, and Peter Kröner all had direct or indirect influence on the book.
When you think of the TypeScript community, you inevitably think of Orta Therox, whose tireless work on- and off-hours continuously brings the community together. I’m incredibly honored that he agreed to open this book.
Last, but not least, I want to thank my wonderful family Doris, Clemens, and Aaron for their support, their understanding, and their shared enthusiasm. And I’m sorry for all the times my mind wandered off into type systems, where it should’ve been with the LEGO blocks.
—
1.http://www.robdraper.co.uk/

Foreword
There are so many ways to learn a programming language, and even more ways to go from “I can read this” to “I truly understand what is going on here.”
The official TypeScript documentation has to walk a fine line between being authoritative and trying to cater to a large amount of learners with diverse backgrounds. As more people adopt TypeScript, we need more ways to help them understand the tools the language provides.
When I interviewed for the TypeScript team, I pitched a vision of language documentation that takes into account the rich community of people writing articles, who help the TypeScript team’s writing stay focused.
Stefan Baumgartner is one of those incredible community members.
Stefan runs TypeScript meetups and conferences, and his blog is a constant source of delightful, insightful articles on the language.
His articles have a personal tone, which reminds me of DMing a colleague a question and they respond with: “Give me a second, I’ll come by and explain this properly.” This book takes that down-to-earth approach and hits all the foundational points in the language. It’s a great fit for Smashing.
TypeScript is an evolving language, and the new features can sound so obtuse unless you have a firm understanding of the foundations and the design constraints on the language. That’s why I was so happy to see the interludes in this book which help fill in some of the gaps of why instead of just showing you the how of TypeScript.
So, I’ll raise a glass emoji 🏆 to a great resource for people growing their knowledge and taking those first few steps into that uncomfortable but gratifying, space of “Today I learned.”
Orta Therox

Introduction
Do you have some time to talk about TypeScript? If you have been following discussion in the tech community during the last couple of years, there has been no way of avoiding countless people gushing over their newest toy: TypeScript, a programming language atop of JavaScript, which supposedly makes everything a lot better.
The flood of information on TypeScript, and the amount of opinions on TypeScript, can be overwhelming. But there is no denying that its significance grows stronger every day. In the 2020 StackOverflow developer survey,1 67% stated that TypeScript was their most loved language, coming in at second place. While with npm, Inc., Laurie Voss found in the 2019 npm survey2 that around 63% of npm users used some sort of TypeScript, with 52% primarily writing TypeScript. Those are big numbers!
The same person, a different survey, a different community: in the “State of the Jamstack Survey 2020,”3 Laurie found that around 10% use TypeScript primarily. About this survey, Laurie said:
“I keep running into this phenomenon that people who write TypeScript think of themselves as TypeScript devs, not JavaScript developers. Which is strange because TypeScript itself describes itself as being just JavaScript!”

Laurie has a point here. There seems to be an artificial split between people who consider themselves JavaScript developers, and people who think they don’t write JavaScript anymore. I myself kept ditching TypeScript4 for years, seeing it only as a way to make something supposed to be easy JavaScript a lot more difficult. To me, TypeScript was JavaScript for Java developers.
Oh, how wrong I was! TypeScript can be much more than that. A subtle tool, a simple layer atop the programming language that drives the web. If you ever find yourself:
•writing JavaScript with libraries and frameworks you barely know
•writing JavaScript with others
•writing JavaScript that deals with back-end data
•writing JavaScript that your future self has to continue working on
then TypeScript will do right by you. This book will give you a gentle, human introduction to one of most beloved programming languages, and you will end up a master of type systems.
Who This Book Is For
This book is for developers who know enough JavaScript to be dangerous. They spend an increasing amount of time programming and want to be more productive in doing so. With TypeScript, they hope to get more information out of their JavaScript code for themselves and their colleagues.
This book is also for developers who dipped their toes into TypeScript and now want to get their feet wet. They want to learn about type systems and how they can be used to define complex JavaScript scenarios. This knowledge will ultimately become language-independent, preparing them for different programming languages that have elaborate type systems.
Scope of This Book
Programming books have a tendency to become outdated very quickly. The moment you hold the printed version in your hands, the world has moved on and parts are out of date, or important lessons are left out. When I set out to write this book, my most important goal was that it had to be timeless. TypeScript gets at least two major releases a year, so there are new features and changes on certain aspects of the programming language.
That’s why we focus on the long-lasting aspects of the type system. The main way to program will be JavaScript; TypeScript will work as an additional type layer describing the behavior of our code. This is also aligned with the way the TypeScript team design their upcoming work. After reading this book, you will immediately understand what new features are about.
TypeScript in 50 Lessons
This book is TypeScript for humans, so I want to give you the most human introduction to the programming language. This is why we split up the book into seven chapters with seven lessons each, with a final lesson at the end.
The lessons are practical, based on real-world problems that I and many friends and peers have encountered over the last few years. Each lesson takes no longer than ten minutes to read and digest, making it the perfect companion for commuting, or a little light reading before bed. Smaller, casual interludes between chapters provide context or point to TypeScript features outside our main focus.
On the book’s website,5 you will find editable examples for each lesson for you to play around with.
Chapters build on one another, with each chapter focusing on a specific part of the language around a concrete example.
Here’s a chapter rundown.
1. TypeScript for Smashing People
We go on a hunt for red underlines. If a word processor can highlight our spelling and grammar mistakes, why shouldn’t a programming editor do the same? In this opening chapter, we will see that given the right tools we might already be using TypeScript without realizing. With TypeScript being a gradual type system, we can gently encourage the programming language to give us more insights into our code. We will also write our first types.
2. Working with Types
We learn about some major features of TypeScript, like type annotations, type inference, and control flow. We will define primitive and complex types, and learn about the difference between types and interfaces. For every variable or constant we can create, we find a way to provide a type.
3. Functions
Functions are an essential feature in JavaScript, and we can see that once we want to type function signatures. We learn about function heads and bodies, structural typing for functions, and how we can define different behavior for the same function.
4. Union and Intersection Types
TypeScript’s type system can be seen as an endless space of values, and types are nothing but discrete sets of values inside this space. This allows for algebraic operations like union and intersections, making it a lot easier for us to define concrete types for values. We learn about type widening and narrowing, top and bottom types, and how we can influence control flow.
5. Generics
Generics are a way to prepare types for the unknown. Whenever we know a certain behavior of a type but can’t exactly say which type it affects, a generic helps us to model this behavior. We learn about generic constraints, binding generics, mapped types, and type modifiers.
6. Conditional Types
Conditional types are arguably the most unique feature to TypeScript’s type system. They allow us to introduce a level of meta-programming unseen in programming languages, where we can create if/else clauses to determine a type based on the input type. This allows for a powerful set of tools we can use to define model and behavior once, and make sure we don’t end up in type maintenance hell.
7. Thinking in Types
The final chapter deals with situations you might encounter in your everyday programming life. We use these situations to get into a thinking-in-types mindset, where we take care about a robust and well-defined set of types before starting implementation. This helps us validate that what we code is what we expect.
—
1.https://smashed.by/stackoverflow
2.https://smashed.by/npmsurvey
3.https://smashed.by/jamstacksurvey
4.https://smashed.by/whytypescript
5.https://typescript-book.com

[image: Chapter 4: Union and Intersection Types]

Chapter 4
Union and Intersection Types
We’ve come quite far with TypeScript. We’ve learned about the tooling aspect, type inference, and control flow analysis, and we know how to type objects and functions effectively. With what we have learned, we are able to write pretty complex applications and most likely will get good enough tooling out of it to get us through our day.
But JavaScript is special. The flexibility of JavaScript that allows for easy to use programming interfaces is, frankly, hard to sum up in regular types. This is why TypeScript offers a lot more.
Starting with this chapter, we’ll go deep into TypeScript’s type system. We will learn about the set theory behind TypeScript, and how thinking in unions and intersections will help us get even more comprehensible and clearer type support. This is where TypeScript’s type system really shines and starts becoming much more powerful than what we know from traditional programming languages. It’s going to be an exciting ride!
To illustrate the concepts of union and intersection types, we’ll work on a page for tech events: meetups, conferences, and webinars; events that are similar in nature, but distinct enough to be treated differently.
Lesson 22: Modeling Data
Imagine a website that lists different tech events:
1. Tech conferences: people meet at a certain location and listen to a couple of talks. Conferences usually cost something, so they have a price.
2. Meetups: smaller in scale, meetups are similar to conferences from a data perspective. They also happen at a certain location with a range of talks, but compared with tech conferences they are usually free. Well, at least in our example they are.
3. Webinars: instead of people attending in a physical space, webinars are online. They don’t need a location, but a URL where people can watch the webinar in their browser. They can have a price, but can also be free. Compared with the other two event types, webinars feature only one talk.
All tech events have common properties, like a date, a description, a maximum number of attendees, and an RSVP count. We also have a string identifier in the property kind, where we can distinguish between conferences, webinars, and meetups.
In our app, we’re working with that kind of data a lot. We grab a list of tech events as JSON from a back end, and also when we add new events to a list, or want to retrieve their properties to display them in a UI.
To make life easier and much less prone to errors we want to spend some time modeling this data as TypeScript types. With that, we not only get proper tooling but also red underlines should we forget something.
Let’s start with the easy part. Every kind of tech event has some sort of talk, maybe several. A talk has a title, an abstract, and a speaker. We keep the speaker simple for now and represent them with a simple string. The type for a talk looks like this:
type Talk = {
 title: string,
 abstract: string,
 speaker: string
}
With that in place, we can develop a type for conferences:
type Conference = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,
 location: string,
 price: number,
 talks: Talk[]
}
a type for meetups, where price is a string ("free") instead of a number:
type Meetup = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,
 location: string,
 price: string,
 talks: Talk[]
}
and a type for webinars, where we only have one talk, and we don’t have a physical location but a URL to host the event:
type Webinar = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string,
 url: string,
 price?: number,
 talks: Talk
}
Also, you see that types are optional. With those four types in place, we already modeled a good part of the possible data we can get from the back end. And some parts have a common shape within all three event types, and other parts are subtly, or entirely, different.
Intersection Types
The first thing we realize is that there are lots of similar properties; properties that also should stay the same, the basic shape of a TechEvent. With TypeScript, we’re able to extract that shape and combine it with properties specific to our concrete single types.
First, let’s create a TechEventBase type that contains all the properties that are the same in all three event types.
type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string
}
Then, let’s refactor the original three types to combine TechEventBase with the specific properties of each type.
type Conference = TechEventBase & {
 location: string,
 price: number,
 talks: Talk[]
}

type Meetup = TechEventBase & {
 location: string,
 price: string,
 talks: Talk[]
}

type Webinar = TechEventBase & {
 url: string,
 price?: number,
 talks: Talk
}
We call this concept intersection types. We read the & operator as and. We combine the properties from one type A with that of another type B, much like extending classes. The result is a new type with the properties of type A and type B.
The immediate benefit we get is that we can model common properties in one place, which makes updates and changes a lot easier. Furthermore, the actual difference between types becomes a lot clearer and easier to read. Each subtype has just a couple of properties we need to take care of, instead of the full list.
Union Types
But what happens if we get a list of tech events, where each entry can be either a webinar, or a conference, or a meetup? Where we don’t know exactly what entries we get, only that they are of one of the three event types.
For situations like that, we can use a concept called union types. With union types we can model exactly the following scenario: defining a TechEvent type that can be either a Webinar, or a Conference, or a Meetup. Or, in code:
type TechEvent = Webinar | Conference | Meetup;
We read the pipe operator | as or. What we get is a new type, a type that tries to encompass all possible properties available from the types we set in union. The new type can access the following properties:
•title, description, date,
•capacity, rsvp, kind the properties all three types have in common with their original primitive type. This is what the shape of TechEventBase gives us.
•talks. This property can be either a single Talk, or an array Talk[]. Its new type is Talk | Talk[].
•price. The price property is also available in all three original object types, but its own type is different. price can be either string or number, and following Webinar it can be optional. To safely work with price, we have to do some checks within our code: we have to check if it’s available, and then we have to do typeof checks to see if we’re dealing with a number or a string.
Working with price and talks might look something like this:
function printEvent(event: TechEvent) {
 if(event.price) {
 // Price exists!
 if(typeof event.price === 'number') {
 // We know that price is a number
 console.log('Price in EUR: ', event.price)
 } else {
 // We know that price is a string, so the
 // event is free!
 console.log('It is free!')
 }
 }

 if(Array.isArray(event.talks)) {
 // talks is an array
 event.talks.forEach(talk => {
 console.log(talk.title)
 })
 } else {
 // It's just a single talk
 console.log(event.talks.title)
 }
}
Does this structure remind you of something? Back in chapter 2 we learned about the concept of control flow, and narrowing down types with type guards. This is exactly what’s happening here. Since the type can take on different shapes, we can use type guards (if statements) to narrow down the union type to its single type.
Please note that we are moving between the union types of the respective properties price and talks. All other information of the original types Webinar, Conference, and Meetup that can’t be unified (like location and URL) are dropped from the shape of the union. We need some more information to narrow down to the original object shapes.
Lesson 23: Moving in the Type Space
Before we continue, let’s quickly review what we’ve just learned. We learned about intersection types, the way to combine two or more types into one, much like extending from an object type. And we learned about union types, a way to extract the lowest common denominator of a set of types. But why do we call them intersection and union types?
Set Theory
To find out, we need to review what types actually are. In his book Programming with Types, Vlad Riscutia defines a type as follows1:
“A type is a classification of data that defines the operations that can be done on that data, the meaning of the data, and the set of allowed values.”

The part we want to focus on is the “set of allowed values.” This is something we already experienced when working with types. Once a variable has a certain type annotation, TypeScript only allows a specific set of values to be assigned. Type string only allows for strings to be assigned; number only allows for numbers to be assigned. Each type deals with a distinct set of values. When we think further, we can put those sets in a hierarchy.
The types any and unknown encompass the whole set of all available values. They are known as top types as they are on the very top of the hierarchy.
[image: Top types, including all other types.]
Top types, including all other types.
Primitive types such as boolean, number or string are one level below any and unknown. They cluster the set of all available values into distinct sets of specific values: all Boolean values, all numbers, all strings.
[image: Primitive and complex type sets.]
Primitive and complex type sets.
Those sets are distinct. They don’t share any common values. If we now build a union type string | number, we allow for all values that are either from the set string or the set number, which means we get a union set of possible values.
[image: A union of numbers and string.]
A union of numbers and string.
If we were to build an intersection type string & number, we’d have an empty intersection set as they don’t share any common values.
This is also where the term narrowing down comes from. We want to have a narrower set of values. If our type is any, we can do a typeof check to narrow down to a specific set in the type space. We move from a top type down to a narrower set of values.
Object Sets
With primitive types it’s straightforward, but it gets a lot more fun if we consider object types. Take these two types, for example:
type Name = {
 name: string
}

type Age = {
 age: number
}
Since we have a structural type system, an object like
const person = {
 name: 'Stefan Baumgartner',
 city: 'Linz'
}
is a valid value of type Person. This object
// In my midlife crisis, I don't use semicolons
// ... just like the cool kids
const midlifeCrisis = {
 age: 38,
 usesSemicolons: false
}
is a valid value of type Age. This object
const me = {
 name: 'Stefan Baumgartner',
 age: 38
}
is compatible with both Age and Name.
However, we can’t assign every value of type Age to a type Name because the sets are distinct enough to not have any common values. Once we define the union type Age | Name, both midlifeCrisis and person are compatible with the newly created type. The set gets wider, the number of compatible values gets bigger. But we also lose clarity.
Conversely, an intersection type Person = Age & Name combines both sets. Now we need all properties from type Age and type Name.
[image: An intersection of Name and Age.]
An intersection of Name and Age.
With that, only the variable me becomes compatible with the newly generated type. The intersection is a subset of both Age and Name sets smaller, narrower, and we have to be more explicit about our values.
Formally speaking, all values from type A are compatible with type A | B, and all values from type A & B are compatible with type B.

Value Types
Let’s take this concept of narrowing and widening sets even further. We now know that we can have all available values and narrow them down to their primitive types. We can narrow down the complex types, like the set of all available objects, to smaller sets of possible objects defined on their property keys. Can we get even smaller?
We can! We can narrow down primitive types to values. It turns out that each specific value of a set is its own type: a value type.
[image: And finally, value types.]
And finally, value types.
Let’s look at the string 'conference' for example.
let conf = 'conference'
Our variable conf is compatible with a couple of types:
let withTypeAny: any = 'conference' // OK!
let withTypeString: string = 'conference' // OK!

// But also:

let withValueType: 'conference' = 'conference' // OK!
You see that the set gets narrower and narrower. Type any selects all possible values, type string all possible strings. But type 'conference' selects the specific string 'conference'. No other strings are compatible.
TypeScript is aware of value types when assigning primitive values:
// Type is string, because the value can change
let conference = 'conference'

// Type is 'conference', because the value can't
// change anymore.
const conf = 'conference'
Now that we’ve narrowed down the set to value types, we can create wider custom sets again. Let’s get back to our tech events example. We have three different types of tech event: conferences, webinars, and meetups. When our back end sends along details of which kind of events we are dealing with, we can create a custom union type:
type EventKind =
 'webinar' | 'conference' | 'meetup'
With that, we can be sure we don’t assign any values that aren’t intended, and we rule out typos, and other mistakes.
// Cool, but not possible
let tomorrowsEvent: EventKind = 'concert'
The value sets of primitive types are technically infinite. We would never be reasonably able to express the full spectrum of string or number in a custom type. But we can take very specific slices out of it when it conforms to our data.
When we are deep in TypeScript’s type system, we do a lot of set widening and narrowing. Moving around in sets of possible values is key to define clear yet flexible types that give us first-class tooling.

Lesson 24: Working with Value Types
Let’s incorporate our new knowledge about value and union types to our tech event data structure.
In lesson 22 (at the start of this chapter) we figured out a TechEventBase type that includes all common properties of each tech event:
type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: string
}
The last property of this type is called kind and it holds information on the kind of tech event we are dealing with. The type of kind is string at the moment, but we know that this type can only take three distinct values:
type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
 kind: 'conference' | 'meetup' | 'webinar'
}
That’s already much better than the previous version. We are more secure against wrong values and typos. This has an immediate effect on what we can do with the combined union type TechEvent. Let’s look at another function called getEventTeaser:
function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference)`
 case 'meetup':
 return `${event.title} (Meetup)`
 case 'webinar':
 return `${event.title} (Webinar)`
 // Again: cool, but not possible
 case 'concert':
 }
}
TypeScript immediately reports an error, because the type 'concert' is not comparable to type 'conference' | 'meetup' | 'webinar'. Unions of value types are brilliant for control flow analysis. We don’t run into situations that can’t happen, because our types don’t support such situations. All possible values of the set are taken care of.
Discriminated Union Types
But we can do more. Instead of putting a union of three value types at TechEventBase, we can move very distinct value types down to the three specific tech event types. First, we drop kind from TechEventBase:
type TechEventBase = {
 title: string,
 description: string
 date: Date,
 capacity: number,
 rsvp: number,
}
Then we add distinct value types to each specific tech event.
type Conference = TechEventBase & {
 location: string,
 price: number,
 talks: Talk[],
 kind: 'conference'
}

type Meetup = TechEventBase & {
 location: string,
 price: string,
 talks: Talk[],
 kind: 'meetup'
}

type Webinar = TechEventBase & {
 url: string,
 price?: number,
 talks: Talk,
 kind: 'webinar'
}
At first glance, everything stays the same. If you hover over the event.kind property in our switch statement, you’ll see that the type for kind is still 'conference' | 'meetup' | 'webinar'. Since all three tech event types are combined in one union type, TypeScript creates a proper union type for this property, just as we would expect.
But underneath, something wonderful happens. Where before TypeScript just knew that some properties of the big TechEvent union type existed or didn't exist, with a specific value type for a property we can directly point to the surrounding object type.
Let’s see what this means for the getEventTeaser function:
function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 // We now know that I'm in type Conference
 return `${event.title} (Conference), ` +
 // Suddenly I don't have to check for price as
 // TypeScript knows it will be there
 `priced at ${event.price} USD`
 case 'meetup':
 // We now know that we're in type Meetup
 return `${event.title} (Meetup), ` +
 // Suddenly we can say for sure that this
 // event will have a location, because the
 // type tells us
 `hosted at ${event.location}`
 case 'webinar':
 // We now know that we're in type Webinar
 return `${event.title} (Webinar), ` +
 // Suddenly we can say for sure that there will
 // be a URL
 `available online at ${event.url}`
 default:
 throw new Error('Not sure what to do with that!')
 }
}
Using value types for properties works like a hook for TypeScript to find the exact shape inside a union. Types like this are called discriminated union types, and they’re a safe way to move around in TypeScript’s type space.
Fixating Value Types
Discriminating unions are a wonderful tool when you want to steer your control flow in the right direction. But it comes with some gotchas when you rely heavily on type inference (which you should).
Let’s define a conference object outside of what we get from the back end.
const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feel-good JS conference',
 kind: 'conference',
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in Mind',
 abstract: '...'
 }]
};
By our type signature, this would be a perfectly fine value of the type TechEvent (or Conference). However, once we pass this value to the function getEventTeaser, TypeScript will hit us with red underlines.
getEventTeaser(script19)
According to TypeScript, the types of script19 and TechEvent are incompatible. The problem lies in type inference. The moment we assign this value to the script19 variable, TypeScript tries to guess the correct type of each property value, and aims for the set it can be most sure will work. As with const objects, all properties are still variable, and inferred types are mostly strings and numbers for simple properties.
This means the property kind in script19 will not be inferred as 'conference' but as string. And string is a much wider set of values than 'conference'. For this to work, we need to tell TypeScript again that we are looking for the value type, not for its superset of types. We have a couple of possibilities to do that.
First, let’s do a left-hand side type annotation.
const script19: TechEvent = {
 // All the properties from before ...
}
With that, TypeScript does a type check right at the assignment. This way, the value 'conference' for kind will be seen as the annotated value type instead of the much wider string. Not only that, but TypeScript will also understand which subtype of the discriminated type union we are dealing with. If you hover over script19, you’ll see that TypeScript will correctly understand this value as Conference.
[image: Declared as TechEvent, understood as Conference.]
Declared as TechEvent, understood as Conference.
But we lose some of the conveniences we get when we rely on type inference. Most of all, we lose the ability to leverage structural typing and work freely with objects that just need to be compatible with types rather than explicitly be of a certain shape.
For scenarios like that, we can fix certain properties by doing type casts. One way would be to cast the type of property kind specifically to the value type:
const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feel-good JS conference',
- kind: 'conference',
+ kind: 'conference' as 'conference',
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in Mind',
 abstract: '...'
 }]
};
That will work, but we lose some type safety as we could also cast 'meetup' as 'conference'. Suddenly, we again don’t know which types we are dealing with, and this is something we want to avoid.
Much better is to tell TypeScript that we want to see this value in its const context:
const script19 = {
 title: 'ScriptConf',
 date: new Date('2019-10-25'),
 capacity: 300,
 rsvp: 289,
 description: 'The feel-good JS conference',
- kind: 'conference',
+ kind: 'conference' as const,
 price: 129,
 location: 'Central Linz',
 talks: [{
 speaker: 'Vitaly Friedman',
 title: 'Designing with Privacy in Mind',
 abstract: '...'
 }]
};
This works just like assigning a primitive value to a const and fixate its value type.
[image: What we get with as const.]
What we get with as const.
You can apply const context events to objects, casting all properties to their value types, effectively creating a value type of an entire object. As a side effect, the whole object becomes read-only.
Lesson 25: Dynamic Unions
Consider the following function. We get a list of tech events and want to filter them by a specific event type:
type EventKind =
 'conference' | 'webinar' | 'meetup'

function filterByKind(
 list: TechEvent[],
 kind: EventKind
): TechEvent[] {
 return list.filter(el => el.kind === kind)
}
This function takes two arguments: list, the original event list; and kind, the kind we want to filter by. We return a new list of tech events. We make use of two types to improve type safety. One is TechEvent, which we used a lot in the last lessons. The other one is EventKind, a union of all available value types for the property kind. With that union in place, we are allowed to only filter by the kinds of event listed in that union:
// A list of tech events we get from a back end
declare const eventList: TechEvent[]

filterByKind(eventList, 'conference') // OK!
filterByKind(eventList, 'webinar') // OK!
filterByKind(eventList, 'meetup') // OK!

// 'concert' is not part of EventKind
filterByKind(eventList, 'concert') // ERROR!
This is a tremendous improvement for developer experience, but has some pitfalls when our data is changing.
Lookup Types
What if we get another event type to the existing list of event types, called Hackathon? A live, in-person coding event that might cost something but has no talks.
Let’s define the new type:
type Hackathon = TechEventBase & {
 location: string,
 price?: number,
 kind: 'hackathon'
}
And add Hackathon to the union of TechEvents:
type TechEvent =
 Conference | Webinar | Meetup | Hackathon
Immediately, we get a disconnect between EventKind and TechEvent. We can’t filter by 'hackathon' even though it should be possible.
// This should be possible
filterByKind(eventList, 'hackathon') // ERROR!
One way to change this would be to adapt EventKind every time we change TechEvent. But this is a lot of effort, especially with growing or changing lists of data. What if, all of a sudden, in-person conferences are not a thing anymore?
We want to keep the changes we make to our types as minimal as possible. For that, we need to create a connection between EventKind and TechEvent.
You might have noticed that object types have a similar structure to JavaScript objects. It turns out we have similar operators on object types as well. Just like we can access the property of an object by indexing it, we can access the type of a property by using the right index:
declare const event: TechEvent
// Accessing the kind property via the index
// operator
console.log(event['kind'])

// Doing the same thing on a type level
type EventKind = TechEvent['kind']
// EventKind is now
// 'conference' | 'webinar' | 'meetup' | 'hackathon'
Since the union of TechEvent already combines all possible values of property types into unions, we don’t need to define EventKind on our own anymore. Types like this are called index access types or lookup types.
With lookup types we create our own system of connected types that produce red underlines everywhere we didn’t expect them, acting as a safeguard for our own, ever-changing work.
Mapped Types
Speaking of dynamically generated types, let’s look at a function that groups events by their kind.
type GroupedEvents = {
 conference: TechEvent[],
 meetup: TechEvent[],
 webinar: TechEvent[],
 hackathon: TechEvent[]
}

function groupEvents(
 events: TechEvent[]
): GroupedEvents {
 const grouped = {
 conference: [],
 meetup: [],
 webinar: [],
 hackathon: []
 };
 events.forEach(el => {
 grouped[el.kind].push(el)
 })
 return grouped
}
The function creates a map, and then stores the original list of tech events in a new order, based on the event kind. Again, we face a similar problem as before. The type GroupedEvents is manually maintained. We see that we have four different keys based on the events that we work with, and the moment the original TechEvent union changes, we would have to maintain this type as well.
Thankfully, TypeScript has a tool for situations like this. With TypeScript we can create object types by running over a set of value types to generate property keys, and assigning them a specific type.
In our case, we want the keys hackathon, webinar, meetup, and conference to be generated automatically and mapped to a TechEvent list by running over EventKind:
type GroupedEvents = {
 [Kind in EventKind]: TechEvent[]
}
We call this kind of type mapped type. Rather than having clear property names, they use brackets to indicate a placeholder for eventual property keys. In our example, the property keys are generated by looping over the union type EventKind. To visualize how this works, let’s expand the mapped type ourselves in a couple of steps:
// 1. The original declaration
type GroupedEvents = {
 [Kind in EventKind]: TechEvent[]
}

// 2. Resolving the type alias.
// We suddenly get a connection to tech event
type GroupedEvents = {
 [Kind in TechEvent['kind']]: TechEvent[]
}

// 3. Resolving the union
type GroupedEvents = {
 [Kind in 'webinar' | 'conference'
 | 'meetup' | 'hackathon']: TechEvent[]
}

// 4. Extrapolating keys
type GroupedEvents = {
 webinar: TechEvent[],
 conference: TechEvent[],
 meetup: TechEvent[],
 hackathon: TechEvent[],
}
Just like we get from our original type! Mapped types are not only a convenience that allows us to write a lot less and get the same kind of tooling. We also create an elaborate network of connected type information that allows us to catch errors the very moment our data changes.
The moment we add another kind of event to our list of tech events, EventKind gets an automatic update and we get more information for filterByKind. We also know that we have another entry in GroupedEvents, and the function groupEvents won’t compile because the return value lacks a key. And we get all these benefits at no extra cost. We just have to be clear with our types and create the necessary connections.
Remember, type maintenance is a potential source of errors. Dynamically updating types helps.
Lesson 26: Object Keys and Type Predicates
Our website not only lists events of different kinds it also allows users to maintain lists of events they’re interested in. For users, events can have different states:
1. Users can be watching events they’re interested in. They can keep up to date on speaker announcements and more.
2. Users can be actively subscribed to events, meaning that they either plan to attend or have already paid the fee. For that, they responded to the event.
3. Users can have attended past events. They want to keep track of video recordings, feedback, and slides.
4. Users can have signed out of events, meaning they were either subscribed to an event but changed their mind, or they just don’t want to see that event in their lists anymore. Our application keeps track of those events as well.
As always, we want to model our data first. As we don’t want to change our existing types, but want a quick way to access all four categories, we create another object that serves as a map to each category. The type for this object looks like this:
type UserEvents = {
 watching: TechEvent[],
 rvsp: TechEvent[],
 attended: TechEvent[],
 signedout: TechEvent[],
}
Now for some operations on this object.
keyof
We want to give users the option to filter their events. First by category: watching, rsvp, attended, and signedout; second and optionally by the kind of event: conference, meetup, webinar, or hackathon. The function we want to create accepts three arguments:
1. The userEventList we want to filter.
2. The category we want to select. This matches one of the keys of the userEventList object.
3. Optionally, a string of the set EventKind that allows us to filter even further.
The first filter operation is quite simple. We want to access one of the lists via the index access operator; for example, userEventList['watching']. So for the type of the category we create a union type that includes all keys of userEventList.
type UserEventCategory =
 'watching' | 'rsvp' | 'attended' | 'signedoff'

function filterUserEvent(
 userEventList: UserEvents,
 category: UserEventCategory,
 filterKind?: EventKind
) {
 const filteredList = userEventList[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
}
This works, but we face the same problems as we did in the previous lesson: we’re maintaining types manually, which is prone to errors and typos. Problems of that kind that are hard to catch. Perhaps you didn’t notice I made a mistake by using the value type signedoff in UserEventCategory, which isn’t a key in UserEvents. That would be signedout.
We want to create types like this dynamically, and TypeScript has an operator for that. With keyof we can get the object keys of every type we define. And I mean every. We can use keyof even with value types of the string set and get all string functions. Or with an array and get all array operators:
// 'speaker' | 'title' | 'abstract'
type TalkProperties = keyof Talk

// number | 'toString' | 'charAt' | ...
type StringKeys = keyof 'speaker'

// number | 'length' | 'pop' | 'push' | ...
type ArrayKeys = keyof []
The result is a union type of value types. We want the keys of our UserEvents, so this is what we do:
function filterUserEvent(
 userEventList: UserEvents,
 category: keyof UserEvents,
 filterKind?: EventKind
) {
 const filteredList = userEventList[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
}
The moment we update our UserEvent type, we also know which keys we have to expect. So if we remove something, instances where a removed key is used get red underlines. If we add another key, TypeScript will give us proper autocomplete for it.
Type Predicates
Let’s assume that filterUserEvents is not only within our application, but also available outside. Other developer teams in our organisation can access the function, and they might not use TypeScript to get their job done. For them, we want to catch some possible errors up front, while still retaining our type safety.
From both filter operations, the category filter is the problematic one, as it could access a key that is not available in userEventList. To keep it type-safe for us, and more flexible to the outside, we accept that category is not a subset of string, but the whole set of strings:
function filterUserEvent(
 list: UserEvents,
 category: string,
 filterKind?: EventKind
) {
 // ... tbd
}
But before we access the category, we want to check if this is a valid key in our list. For that, we create a helper function called isUserEventListCategory:
function isUserEventListCategory(
 list: UserEvents,
 category: string
) {
 return Object.keys(list).includes(category)
}
and apply this check to our function:
function filterUserEvent(
 list: UserEvents,
 category: string,
 filterKind?: EventKind
) {
 if(isUserEventListCategory(list, category)) {
 const filteredList = list[category]
 if (filterKind) {
 return filteredList.filter(event =>
 event.kind === filterKind)
 }
 return filteredList
 }
 return list
}
This is enough safety to not crash the program if we get input that doesn’t work for us. But TypeScript (especially in strict mode) is not happy with that. We lose all connections to UserEvents, and category is still a string. On a type level, how can we be sure that we access the right properties?
This is where type predicates come in. Type predicates are a way to add more information to control flow analysis. We can extend the possibilities of narrowing down by telling TypeScript that if we do a certain check, we can be sure our variables are of a certain type:
function isUserEventListCategory(
 list: UserEvents,
 category: string
): category is keyof UserEvents { // The type predicate
 return Object.keys(list).includes(category)
}
Type predicates work with functions that return a Boolean. If this function evaluates to true, we can be sure that category is a key of UserEvents. This means that in the true branch of the if statement, TypeScript knows the type better. We narrowed down the set of string to a smaller set keyof UserEvents.
Lesson 27: Down at the Bottom: never
With all that widening and narrowing of sets, even down to single values being a type, we have to ask ourselves: can we get even narrower?
Yes, we can. There’s one type that’s at the very bottom of the type hierarchy. One type that is an even smaller set than a set with one value. The type without values. The empty set: never.
never in Control Flow Analysis
never behaves pretty much like the anti-type of any. Whereas any accepts all values and all operations on those values, never doesn’t accept a single value at all. It’s impossible to assign a value and, of course, there are no operations we can do on a type that is never. So what does a type with no values feel like when we are working with it?
We briefly touched on this already; it was hidden in plain sight. Let’s go back to lesson 24 and remember what we did when writing the getEventTeaser function, now with the Hackathon type included:
function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar) ` +
 `available online at ${event.url}`
 case 'hackathon':
 return `${event.title} (Hackathon)`
 default:
 throw new Error('Not sure what to do with that!')
 }
}
This switch statement runs through all the value types within the EventKind union type: 'conference' | 'meetup' | 'webinar' | 'hackathon'. With every case statement in our switch, TypeScript knows to take one value type away from this list. After we’ve checked for 'conference', it can’t be checked again later on.
Once this list is exhausted, we have no more values left in our set. The list is empty. This is the default branch in our switch statement. But, if we checked for all values in our list, why would we run into a default branch anyway? Wouldn’t that be erroneous behaviour?
Exactly! This is highly erroneous, as we indicate by throwing a new error right away! Running into the default branch can never happen. Never!
There it was, the never word. So this is what type never is all about. It indicates the cases that aren’t supposed to happen, telling us that we should be very careful as our variables probably don’t contain the values we expect.
If you take the example above, enter event in the first line of the default branch and hover over it, TypeScript will show you exactly that.
[image: The list is exhausted, event is never.]
The list is exhausted, event is never.
Any operation on event, other than being part of an error thrown, will cause compiler errors. This is a situation that should never happen at all!
Preparing for Dynamic Updates
Right now, our getEventTeaser function deals with all entries from EventKind. In the case of a value coming in that isn’t part of the union type, we throw an error. This is great, but only works if we handle all possible cases.
What if we haven’t exhausted our entire list yet? Let’s remove 'hackathon' for now:
function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 default:
 throw new Error('Not sure what to do with that!')
 }
}
In the default branch, event.kind is now 'hackathon', but we aren’t dealing with it we just throw an error. This is somewhat right as we are not sure what to do with that, but it would be a lot nicer if TypeScript alerted us that we forgot something. We want to exhaust our entire list, after all.
For that, we want to make sure that at the end of a long switchcase statement, or in else branches that shouldn’t occur, the type of event is definitely never. Let’s create a utility function that throws the error. But instead of sending just a message, we also want to send the culprit that eventually caused that error. Clue: the type of this culprit is never.
function neverError(
 message: string,
 token: never // The culprit
) {
 return new Error(
 `${message}. ${token} should not exist`
)
}
We substitute the neverError function with the actual error throwing in our switchcase statement:
function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 default:
 throw neverError(
 'Not sure what to do with that',
 event
)
 }
}
And immediately TypeScript’s type checking powers kick in. At this point, event could potentially be a hackathon. We’re just not dealing with that. TypeScript gives us a red underline and tells us that we can’t pass some value to a function that expects never.
After we add 'hackathon' to the list again, TypeScript will compile again, and all our exhaustive checks are complete.
function getEventTeaser(event: TechEvent) {
 switch(event.kind) {
 case 'conference':
 return `${event.title} (Conference), ` +
 `priced at ${event.price} USD`
 case 'meetup':
 return `${event.title} (Meetup), ` +
 `hosted at ${event.location}`
 case 'webinar':
 return `${event.title} (Webinar), ` +
 `available online at ${event.url}`
 case 'hackathon':
 return `even that: ${event.title}`
 default:
 throw neverError(
 'Not sure what to do with that',
 event // No complaints
)
 }
}
With never we get a safeguard that can be used for situations that could occur, but should never occur. Especially when dealing with sets of values that get wider and narrower as we code our applications.
never is the bottom type of all other types, and will be a handy tool in the next chapters.
Lesson 28: undefined and null
Before we close this chapter, we have to talk about two special value types that you will catch sooner or later in your applications: null and undefined.
Both null and undefined denote the absence of a value. undefined tells us that a variable or property has been declared, but no value has been assigned. null, on the other hand, is an empty value that can be assigned to clear a variable or property.
Both values are known as bottom values, values that have no actual value.
Douglas Crockford once said2 that there is a lot of discussion in the programming languages community about whether a programming language should even have bottom values. Nobody has the opinion that there need to be two of them.
undefined and null in the Type Space
undefined and null are somewhat special in TypeScript. Both values are regularly part of each set of types.
[image: The type number with undefined and null.]
The type number with undefined and null.
This is because JavaScript behaves that way. The moment we declare a variable, it is set to undefined. Programatically, we can set variables to null or undefined. But this brings along some problems.
Let’s look at this simple example:
// Let's define a number variable
let age: number

// I'm getting one year older!
age = age + 1
This is valid TypeScript code. We declare a number, and add another number value to it. The problem is that this brings us values we would not expect. The result of this operation is NaN, because we are adding 1 to undefined. Technically, the result is again of type number, just not what we expected!
It can get worse. Let’s go back to our tech event example. We want to create an HTML representation of one of our events and append it to a list of elements. We create a function that runs over the common properties and returns a string:
function getTeaserHTML(event: TechEvent) {
 return `<h2>${event.title}</h2>
 <p>
 ${event.description}
 </p>`
}
We use this function to create a list element, which we can add to our list of events:
function getTeaserListElement(event: TechEvent) {
 const content = getTeaserHTML(event)
 const element = document.createElement('li')
 element.classList.add('teaser-card')
 element.innerHTML = content
 return element
}
A bit rough, but it does the trick. Now, let’s add this element to a list of existing elements:
function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list.append(element)
}
And here’s the problem: we have to be very sure that an element with the ID event-list exists in our HTML. Otherwise document.querySelector returns null, and appending the list will break the application.
Strict null Checks
With null being part of all types, the code above is both valid and highly toxic. A simple change in our markup and the whole application breaks. We need a way to make sure that the result of document.querySelector is actually available and not null.
Of course, we can do null checks or use the fancy “Elvis” operator3 (?. also known as optional chaining4), but wouldn’t it be great if TypeScript told us actively that we should do so?
There is a way. In your tsconfig.json we can activate the option strictNullChecks (which is part of strict mode). Once we activate this option, all nullish values are excluded from our types.
[image: The type number with strict null checks.]
The type number with strict null checks.
With null and undefined not being part of the actual type set, this piece of code will cause an error during compile time:
let age: number
age = age + 1
age is not defined after all! But strictNullChecks does not change how document.querySelector works. The result can still be null. But the return type of document.querySelector is Element | null, a union type with the nullish value! And this makes TypeScript immediately throw a red underline at us:
function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list.append(element)
}
list is probably null. How right TypeScript is. A quick null check (the Elvis operator dancing in front of us) does the trick and makes our code a lot safer:
function appendEventToList(event: TechEvent) {
 const list = document.querySelector('#event-list')
 const element = getTeaserListElement(event)
 list?.append(element) // Optional chaining / Null check
}
Typescript goes a little bit further even. With strictNullChecks enabled, we not only have to check for nullish values, we are also not allowed to assign undefined or null to variables and properties. Both values are removed from all types, so an assignment of that kind is forbidden.
There are situations where we need to work with either undefined or null. To bring one (or both) values back into the mix, we have to add them to a union; for example, string | undefined. This makes adding nullish values explicit, and we have to check for their existence.
type Talk = {
 title: string,
 speaker: string,
 abstract: string | undefined
}
Another way to add undefined is to make properties of an object optional. Optional properties have to be checked for as well, but without us maintaining too many types.
type Talk = {
 title: string,
 speaker: string,
 abstract?: string
}
In any case, like Douglas Crockford said, why should we need two nullish values? If you must use one, stick with one of them.
Recap
This chapter was all about type hierarchies, set theory, top and bottom types, and nullish values that can break our programs. Everything we learned in the scope of union and intersection types is crucial to everything that’s coming up. Once you learn how to move around in the type space, TypeScript has so much to offer you.
1. We learned about union and intersection types, and how we can model data that can take different shapes.
2. We also learned how union and intersection types work within the type space. We also learned about discriminating unions and value types.
3. We learned about const context, and found ways to dynamically create other types through lookup and mapped types.
4. We built our own type predicates as custom type guards.
5. The bottom type never is great for exhaustive checks within switch or ifelse statements.
6. Last, but not least, we dealt with null and undefined and got pretty much rid of them.
One thing that is now second nature to us is widening and narrowing types. We can go from the all-encompassing any down to the type with no values, never. We can freely move around in the type space for all types we know of. Now let’s learn what to do with types whose shapes we don’t know.
—
1.https://smashed.by/typingintro
2.https://smashed.by/crockford
3.https://smashed.by/elvis
4.https://smashed.by/optionalchaining

Interlude: Tuple Types
We traversed the whole type spectrum of primitive types and object types, but there’s one detail we’ve left out: arrays and their subtypes. Consider this function signature:
declare function useToggleState(id: number):
 { state: boolean, updateState: () => void };
You might see something like this when you use a library like React. It takes one parameter, a number. The name suggests it’s an identifier, and it returns an object with the state of our toggle button, and a function to update this state.
When we use this function, we want to use destructuring to have easy access to its properties:
const { state, updateState } = useToggleState(1)
But what happens if we need to use more than one toggle state at the same time?
const { state, updateState } = useToggleState(1)
// Those variables are already declared!
const { state, updateState } = useToggleState(2)
Object destructuring lets us go directly to the properties of an object, declaring them as variables. We can use array destructuring to go directly to the indices of an array, declaring them as variables under an entirely new name:
const [first, updateFirst] = useToggleState(1)
const [second, updateSecond] = useToggleState(2)
Now we can use first, second and their state update methods freely in our code. Of course, we would require useToggleState to return an array instead.
But how do we type this? We are dealing with two different types. One is Boolean, the other one a function with no parameters and no return value. This is not your average array with a technically endless amount of values of one type.
It’s a tuple. While an array is a list of values that can be of any length, we know exactly how many values we get in a tuple. Usually, we also know the type of each element in a tuple.
In TypeScript, we can define tuples. A tuple type for the example above would be
declare function useToggleState(id: number):
 [boolean, () => void]
Note that we don’t define properties, just types. The order in which the types appear is important.
Tuple types are subtypes of arrays, but they can’t be inferred. If we use type inference directly on a tuple, we will get the wider array type:
// tuple is `(string | number)[]`
let tuple = ['Stefan', 38]
As with any other value type, declaring a const context can infer the types correctly:
// tuple is read-only [string, number]
let tuple = ['Stefan', 38] as const
But this makes tuple read-only too, so be aware.
As with any other subtype, if we declare a narrower type in a function signature or in a type annotation, TypeScript will check against the narrower type instead of the wider, more general type:
function useToggleState(id: number):
 [boolean, () => void] {
 let state = false
 // ... Some magic

 // Type checks!
 return [false, () => { state = !state}]
}
Without the return type, TypeScript would assume that we get an array of mixed Boolean and function values.

About the Author
[image: Stefan Baumgartner]
Stefan Baumgartner is a software architect based in Austria. He has published online since the late 1990s, writing for Manning, Smashing Magazine, and A List Apart. He organizes ScriptConf, TSConf:EU, and DevOne in Linz, and co-hosts the German-language Working Draft podcast.

Table of Contents
Imprint
Acknowledgements
Foreword
Introduction
1. TypeScript for Smashing People
2. Working with Types
3. Functions
4. Union and Intersection Types
5. Generics
6. Conditional Types
7. Thinking in Types
About the Author

OEBPS/Images/image00067.jpeg

OEBPS/Images/image00066.jpeg

OEBPS/Images/image00065.jpeg

OEBPS/Images/image00064.jpeg

OEBPS/Images/image00063.jpeg

OEBPS/Images/image00062.jpeg

OEBPS/Images/image00061.jpeg

OEBPS/Images/image00060.jpeg

OEBPS/Images/image00071.jpeg

OEBPS/Images/image00070.jpeg

OEBPS/Images/image00069.jpeg

OEBPS/Images/image00068.jpeg

OEBPS/Images/cover00059.jpeg

